Assessment of Antioxidant Effects of Aqueous, Ethanolic and Methanolic Extracts of Morus mesozygia Linn. Stapf., Leaves in Streptozotocin-Induced Diabetic Rats

Marcella Tari Joshua¹*, Edna O. Nwachuku¹, N. Boisa² and Nsirim Nduka¹

¹Department of Medical Laboratory Science, Rivers State University Port Harcourt, Nigeria. ²Department of Chemistry, Rivers State University Port Harcourt, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors NN, EON and NB designed the study and wrote the protocol. Author MTJ wrote the draft of the manuscript, managed the analyses and the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JOCAMR/2020/v10i330165
Editor(s):
(1) Dr. Francisco Cruz-Sosa, Metropolitan Autonomous University, México.
Reviewers:
(1) C. Vichitra, Sri Ramachandra Institute of Higher Education and Research, India.
(2) Nikhat Farhana, India.
Complete Peer review History: http://www.sdiarticle4.com/review-history/60518

ABSTRACT

Aim: The aim of this study was therefore to assess the antioxidant effects of aqueous, ethanolic and methanolic extracts of Morus mesozygia Linn. Stapf., Leaves in Streptozotocin-Induced Diabetic Rats.

Study Design: The study is an experimental case-controlled study.

Place and Duration of Study: This study was carried out at the Biochemistry Research Laboratory, University of Port Harcourt, Rivers State, Nigeria, between June 2018-April 2019.

Methodology: A total of 65 male albino rats that weighed between 150g to 200g were used for this research study. Three different extracted solvents; aqueous, ethanolic and methanolic leaves extracts were administered to different groups of the rats. The male albino rats for this study were induced with a single dose of 40mg/kg b.wt, intraperitoneally of streptozotocin in 0.1M of citrate buffer, pH 4.5. The diabetic male rats were those whose fasting blood glucose (FBG) were from 250 mg/dl or 13 mmol/L and above.

*Corresponding author: E-mail: marcella.joshua4@yahoo.com;
Results: The results showed that there were significant increases in the levels of superoxide dismutase (SOD, 411.8±1.49) ng/ml, total antioxidant status (TAS, 75.25±0.42) mU/ml, total oxidant status (TOS, 353.51±6.07) mU/ml activity, an oxidative stress index of 4.69±0.05 and a reduced concentration of malondialdehyde (MDA of 19.0±1.49 mmol/L) when rats were treated with 400mg/kg of aqueous leaves of Morus mesozygia Linn. S., when compared with those of rats treated with 200mg/kg of aqueous leaf extracts of MMLS. Other methods of extractions (methanolic and ethanolic), also improved the antioxidant statuses of the diabetes induced and treated rats.

Conclusion: Methanolic, ethanolic and aqueous extracts of Morus mesozygia Linn. S ameliorated oxidative stress, in Streptozotocin-induced diabetic rats, with the methanolic extract showing the most potent effect.

Keywords: Antioxidant aqueous; ethanolic; methanolic; Morus mesozygia leaves, streptozotocin-induced; diabetic; rats.

1. INTRODUCTION

A major problem of the metabolic syndrome an individual with type 2 diabetes mellitus have is oxidative stress, which has been reported to be due to insulin resistance. In type 2 diabetes, the impermeability of glucose into the cellular membrane as a result of the defect of the beta cells of Langerhans, has increased the activity of the reactive oxygen species (ROS), which are known to produce free radicals that increase the establishment of the impairment in many tissues via mitochondria electron transport chain leading to a shift in enzymes activity of the body’s defense mechanism. The insulin resistance is reported to be the sole cause of the mechanism behind endothelial dysfunction of smooth muscles as well as organ dysfunction that cause further complications leading to a serious health situation in diabetics [1].

Oxidative stress is the state of the presence of an enormous amount of endogenous oxidative species known as ‘Reactive Oxygen Species’ such as free radicals of superoxides, which includes hydrogen peroxides, nitric oxides and proxy nitrite. These radicals are known to cause the impairment of the endogenous antioxidant defense system [2,3,4]. These species are also known to be responsible for cell damage and also manipulate signal pathways of the deoxyribonucleic acid (DNA) cell structure of the mitochondria, lipids, peroxisomes and protein structures [5].

The signaling effects of oxidative stress are known to have certain functions, such as in transcriptional control as well as cell cycle regulation [2,6], with an interaction between the NADPH oxidases, the redox enzymes and endogenous mitochondrial reactive oxygen species such as the hydrogen peroxides leading to macrovascular damages.

Diabetes mellitus patients have been reported to have an increase in free radical formation. This establishment of free radicals is made possible by certain processes such as glycation that initiates oxidative reactions in the vascular linings, which is significant of diabetic angiopathy and its relevant pathogenesis [7]. The complications that arise from this pathogenesis is an hyperglycemia- induced over production of superoxide which has been described as the causative factor to the development of high glucose concentrations that cause hyperglycemic damages like macrovascular complications (such as diabetic retinopathy, diabetic neuropathy, diabetic nephropathy) and microvascular complications (such as stroke, congestive heart failure and atherosclerosis). Further diagnosis made in the clinical laboratories with patient’s sample revealed increased levels of lipids, proteins, DNA bases causing damages done to the DNA component.

The African mulberry (Morus mesozygia Linn. Stapf.), an herb, is also an African species of the Morus genus plant amongst its temperate species such as Morus alba has been Reported by the Western Yoruba tribes of the Nigerian people to have medicinal value that include treatments of ulcer, veneral diseases as well as certain stomach pains. Bahmani, et al. [8] reported the increasing trends in the usefulness of plants as medicinal remedies in disease conditions to having some certain degree of antioxidant properties than the aforementiond antioxidants. Some drugs in circulation that are prescribed to ailing individuals are plant derivatives. The aim of this study was therefore to assess the antioxidant effects of aqueous,
ethanolic and methanolic extracts of *Morus mesozygia* Linn. *Stapf.*, Leaves in Streptozotocin-Induced Diabetic Rats.

2. MATERIALS AND METHODS

2.1 Animal Preparation

All male albino rats of (150 g to 200 g) in weight were purchased from the University of Port Harcourt. They were used throughout the course of this research work and were made to acclimatize for 14 days under standard laboratory conditions, fed with pelleted rat chow (Top Feed Finisher Mash, Nigeria) and tap water *ad libitum*.

The rats were fed with high fatty feeds which was commercially prepared with margarine and sucrose in combination with the pelleted chow to initiate obesity, recent studies have reported that high fatty diets give out free radicals that contribute to the impairment of beta cells hence hyperglycemia and its subsequent complications [8].

2.2 Plant Collection and Authentication

Morus mesozygia Linn. (family Moraceae) fresh leaves samples were collected by Dr. Oladele A.T. in the month of July, 2018 from an abandoned, fallow farmland at Ile-Ife, Ilesha Road, Ile-Ife, Osun State, South-Western Nigeria and was authenticated by plant botanist, Dr. Oladele A.T. at the Department of Forestry and Wildlife Management, University of Port Harcourt with the herbarium voucher number (UPFH 0125) and was submitted at the department's herbarium.

2.2.1 Preparation of plant extract (cold maceration extraction method)

The *Morus mesozygia* linn leaves were washed with distilled water and air dried separately for seven days and milled into fine powder with the use of a milling machine, the powdered leaves produced a total weight of 2.90 kg, it was stored and labelled into an air tight container prior to use.

2.2.1.1 Extraction of powdered *Morus mesozygia* Linn leaves using distilled water, absolute ethanol and methanol

Nine hundred and sixty grams (960 g) of dried powdered *Morus mesozygia linn* leaves was put into a clean beaker, five liters (5 L) of distilled water, ethanol and methanol separately and were suspended into the beaker, they were shaken severely on a shaker, they were mixed properly and stored for 24 hours. They were macerated and filtered through a muslin cloth and again filtered out through a Whatman's number one filter paper. The filtered extracts were concentrated (on low pressure) using the rotary evaporator equipment [9] after which they were dried on an evaporating dish at a temperature of 50°C to 60°C to a semi-solid form. A sticky semi-solid dark brownish substance was obtained. The extracts were stored in a well corked universal bottle. The leaf extracts were kept in a 4°C refrigerator prior to pharmacological investigations.

2.2.2 Aqueous and ethanolic and methanolic extract dosage calculation

Based on the results from the Acute Toxicity test carried out, (not shown) doses adopted for this research study that was administered orally into the rats were 200 mg/kg (low dose) and 400 mg/kg (high) respectively. The average weights of the experimental rats in each of the groups were taken as these were used to calculate the doses of the extracts that were administered.

2.2.3 Metformin dosage administration

The metformin round tablet brand of Sandox tablet of 500 mg was crushed and dissolved in normal saline containing 0.9% of sodium chloride (weight per volume) and sodium citrate for the oral administration into the fasted diabetic rats as desired doses of 100 mg/kg used by Metformin direct calculation of animal dose from human dose.

2.3 Citrate Buffer Solution Preparation

The citrate buffer solution is a combination of citric acid salt and sodium citrate salt.

About 1.47 grams of the sodium citrate salt was measured and dissolved in 50 ml of distilled water, this was followed by weighing 1.05 gram of citric acid salt which was dissolved in 50ml of distilled water. The mixtures were thoroughly stirred to enable it evenly mixed together and a pH meter was used to check and adjust the pH buffer to 4.5.
2.4 Diabetes Induction with Streptozotocin

After two weeks of acclimatization, diabetes was induced in the male albino rats with streptozotocin (STZ, Sigma Chemical Company, St. Louis, Milestone). STZ was intraperitoneally (i.p.) administered in a dose of 40 mg/kg dissolved in citrate buffer (0.1 M, pH 4.5). Blood glucose concentrations were measured by Fine Test glucometer (Johnson & Johnson) after 48 hours and subsequently throughout the experiment after diabetes induction and glucose concentrations exceeded 250 mg/dl or 13 mmol/L confirmed the diabetic state [10]. The diabetic male rats were picked and used for the study design.

2.5 Administration of Morus mesozygia Linn. (African Mulberry) for Treatment

After the rats were confirmed diabetic at above 13 mmol/L, blood samples were collected from the tail end of the rat. The assay of the blood glucose levels was carried out by the glucose-oxidase principle [11]. Finetest™ test strips and FineTest Auto Coding™ Premium Glucometer, INFOPIA Company, Limited, Korea) was used for the determination of the blood glucose levels of the animals and the results expressed as mmol/L.

The administration of the Morus mesozygia linn. for the leaf aqueous, ethanol and methanolic extracts were administered by the use of oral gavage method.

2.6 Study Design

The rats were allowed to incubate by acclimatizing for two weeks prior to the progression of the study. They were randomly separated into 13 groups of 5 rat each as shown below:

- **Group One**: 5 male rats were given pellet feeds and water *ad libitum*, this served as the ‘Negative Control’ group.

- **Group Two**: 5 male rats were induced intraperitoneally with a single dose of 40 mg/kg body weight of streptozotocin and were fed with pellets and water *ad libitum*, this served as the ‘Positive Control’ group.

- **Group Three**: 5 male rats were given 400 mg/kg body weight orally of aqueous leaf extract only.

- **Group Four**: 5 male rats were given 400 mg/kg body weight orally of ethanolic leaf extract only.

- **Group Five**: 5 male rats were induced with a single dose of 40 mg/kg body weight of streptozotocin and treated with 400 mg/kg body weight of aqueous leaf extract.

- **Group Six**: 5 male rats were induced intraperitoneally with a single dose of 40 mg/kg body weight of streptozotocin and treated orally with 200 mg/kg body weight of aqueous leaf extract.

- **Group Seven**: 5 male rats were induced intraperitoneally with a single dose of 40 mg/kg body weight of streptozotocin and treated orally with 400 mg/kg body weight of ethanolic leaf extracts.

- **Group Eight**: 5 male rats were induced intraperitoneally with a single dose of 40 mg/kg body weight of streptozotocin and treated orally with 200 mg/kg body weight of ethanolic leaf extracts.

- **Group Nine**: 5 male rats were induced intraperitoneally with a single dose of 40 mg/kg body weight of streptozotocin and treated orally with 100 mg/kg body weight of metformin standard drug.

- **Group Ten**: 5 male rats were induced intraperitoneally with a single dose of 40 mg/kg body weight of streptozotocin and treated orally with 400 mg/kg body weight of aqueous leaf extract and 100 mg/kg of metformin.

- **Group Eleven**: 5 male rats were given 400 mg/kg body weight orally with methanolic leaf extract only.

- **Group Twelve**: 5 male rats were induced intraperitoneally with a single dose of 40 mg/kg body weight of streptozotocin and treated orally with 200 mg/kg body weight of methanolic leaf extracts.

- **Group Thirteen**: 5 male rats were induced intraperitoneally with a single dose of 40 mg/kg body weight of streptozotocin and treated orally with 400 mg/kg of methanolic leaf extracts.

2.7 Collection of Sample for Laboratory Analysis

The rats were kept on fasting for 6 hours prior to the process of euthanasia, they were also
weighed before the process started. Blood samples were collected for analysis into lithium heparin bottle for the estimation of oxidative stress markers and antioxidants.

2.7.1 Experimental analysis

2.7.1.1 Determination of Total Oxidant Status (TOS) [12]

Principle: The principle was based on Sandwich-Enzyme linked immunosorbent assay launched between labelled sample and horseradish conjugated antibody specific to total oxidant status.

Procedure: The reagent was brought to room temperature (19-25°C) before the laboratory procedure commenced. The protocol from the manufacturers was followed from the onset to the finish of the test.

Briefly, samples were diluted (1:5), 10 µl of sample was added to the wells, 40 µl of dilution buffer was also added. 100 µl of Horseradish peroxidase conjugate was added into all the wells and incubated at 37°C for 60 minutes.

After the incubation, wells were washed five times according to the manufacturer's instruction. Chromogen A and B were added and incubated in the dark at 37°C for 15 minutes. Thereafter, stop solution was added into all the wells to stop the reaction. Absorbance was read using a microplate reader at 450 nm.

2.7.1.2 Determination of Total Antioxidant Status (TAS) [12]

Principle: The principle was based on Sandwich- Enzyme linked immunosorbent assay with a pre-coated horseradish peroxidase conjugate on the micro ELISA plate that is specific to super oxidase dismutase.

Laboratory Procedure: The procedure followed stringent protocol as laid on the manufacturer's instruction. 40 µl of the sample dilution buffer and 10 ul of the sample were added to all the wells in a dilution factor of 5. The samples were loaded to the bottom and allowed to mix properly.100 µl of horseradish peroxidase conjugate reagent was added to each of the wells excluding the blank well. The mixture was covered with the membrane sealant provided and allowed to incubate for 60°C for 15 minutes. A 20-fold solution of distilled water was used to wash the solution after which it was reserved.

The mixture after discarding off excess liquid was uncovered, it was washed with the wash buffer provided five times for 30 seconds and allowed to drain, this procedure was repeated five more times and finally allowed to dry. 50 µl of chromogen solution A and B were added to all the wells and kept in the dark to incubate for 37°C for 15 minutes which developed a blue color in the wells. 50µl of the

2.7.1.3 Calculation of OSI [12]

Oxidative Stress Index further explains the degree of oxidative stress.

Calculations for the determination of OSI is expressed as the ratio of the total oxidant status (TOS) level by total antioxidant status.

That is

\[
\text{TOS (umol H}_2\text{O}_2 \text{ Eq/L)} / \text{TAS (umol Trolox Eq/L)} \]

2.7.1.4 Determination of superoxide dismutase [13]

The superoxide dismutase kit was obtained from Assay Solution in the United States of America. The experiment followed all the specifications as stipulated by the manufacturer from the beginning to the end of this assay.

Principle: The principle was based on Sandwich- Enzyme linked immunosorbent assay method, an antigen- antibody binding as described by [13].

Laboratory Procedure: 40 µl of the sample dilution buffer and 10 ul of the sample were added to all the wells in a dilution factor of 5.

The samples were loaded to the bottom and allowed to mix properly.100 µl of horseradish peroxidase conjugate reagent was added to each of the wells excluding the blank well. The mixture was covered with the membrane sealant provided and allowed to incubate for 60°C for 15 minutes. A 20-fold solution of distilled water was used to wash the solution after which it was reserved.

The mixture after discarding off excess liquid was uncovered, it was washed with the wash buffer provided five times for 30 seconds and allowed to drain, this procedure was repeated five more times and finally allowed to dry. 50 µl of chromogen solution A and chromogen solution B were added to all the wells and kept in the dark to incubate for 37°C for 15 minutes which developed a blue color in the wells. 50µl of the
stop solution was added after 15 minutes to stop the reaction which enhanced the color developed, the final color developed was yellow. The plate was read at an absorbance of 450 nm.

2.7.1.5 Determination of malondialdehyde

The estimation of malondialdehyde was carried using the method described by [12]

Principle: The principle is based on the quantification of a powerful light-absorbing and fluorescing adduct in a continuous reaction with thiobarbituric acid (TBA).

Laboratory Procedure: 0.8 ml of serum was added to the mixture of TBA, Thiobarbituric acid, hydrochloric acid in equal volumes. The mixture was boiled for ten minutes with the aid of a water bath. After the sample was boiled, it was allowed to cool and centrifuged for ten minutes. The absorbance was read at 532 nm.

2.8 Statistical Analysis

Statistical evaluation was made possible with the application of Graph pad prism (version). Data generated were revealed as mean and standard deviations (Mean ±S. D) in addition to the use of ANOVA (Tukey’s Multiple Comparative Test) since the comparison is within more than two group study. The level of significance was tested at (p<0.05).

3. RESULTS AND DISCUSSION

The results from Table 1 revealed an increased level of superoxide dismutase concentration (SOD, 411.8±1.49) ng/ml, (TAS, 75.25±0.42) mU/ml, (TOS, 353.51±6.07) mU/ml, OSI index of 4.69±0.05 and a reduced concentration of MDA of 19.0±1.49mmol/L that were treated with 400 mg/kg of aqueous leaves extracts of *Morus indica* Linn., This showed that 400 mg/kg of aqueous leaves could be a better dose that has the ability to suppress the levels of oxidative stress in type 2 diabetes mellitus probably because of the presence of the following polyphenols analyzed during the phytochemical analysis (not shown). The highly presence of flavonoids as a bioactive agent may be responsible for the antioxidative activity shown in the reduction of MDA concentration when 400mg/kg of aqueous leaves extracts were administered orally to the diabetic rats compared with that of the non-treated. This was similar to the reports of [14] that observed antioxidant activities such as Quercertin (QT), Quercertin-3-O-glucose-6”-acetate (QT-G,QT-GA), Rutin(RT) on diabetic induced experimental rat models. This again was similar with the work done by [15] who administered 500mg/kg of aqueous leaves extracts of *Morus alba* Linn., in male albino rats and observed a significant alleviation of SOD concentration that played an inductive role in the scavenging of toll- like receptors and the activation of pathways of various oxidative reactive oxygen species which are responsible for certain phagocytic actions that causes damages to the cells.

The significant decreased concentration of MDA in Group 5 on Table 1 of the diabetic rats treated with 400 mg/kg of aqueous leaves extracts was significant due to increased SOD and TAS that induced oxidative stress on the pancreas by the process of lipid peroxidation when compared with the MDA levels of the diabetic male rats in Group 6 treated with a lower dosage of 200mg/kg of aqueous leaves extracts. This antioxidative effect exhibited by the 400 mg/kg dose of aqueous leaves extracts of *MMLS* could be possible due to the high presence of flavonoids, a bioactive phenolic compound that might have worked on an action mechanism against lipid peroxidation capable of initiating oxidative stress with a resultant effect of acting as an antioxidative agent against vascular and cardiovascular diseases that can be classified as risk factors to type two diabetes. This work was in agreement with the work done by [16] who administered diabetic rats with aqueous leaves extracts of mulberry leaves of *Morus indica* Linn. that decreased lipid peroxidation as a result of decreased levels of MDA and further alleviate hyperglycemia; thus on the other hand, hyperglycemia can lead to glycosylation of antioxidant activities like the enzyme superoxide dismutase [17]. The non-diabetic group administered orally with 400 mg/kg aqueous leaves extracts also showed increased significant difference of SOD, TAS, and decreased MDA concentrations when compared with those of the diabetic populations, this can be indicative that this dosage has a potent capacity of combating oxidative stress in any sub population. The Turkey’s Multiple Comparison Test showed a great significant difference between the oxidative
parameters of the positive controls when compared with that of the normal controls.

The results from Table 2 revealed a significant increase in SOD, TAS, decreased TOS and OSI levels in the male diabetic rats treated orally for 30 days with 200 mg/kg of methanolic leaves extracts of *MMLS*., revealing no that the increase in SOD, TAS maintained the integrity of the pancreas against damage due to oxidative stress by ROS when compared with the SOD concentration of the diabetic rats treated orally with 400 mg/kg of methanolic leaves that showed decreased SOD, TAS, increased TOS and OSI that might be due to oxidative damage. The antioxidative nature of 200 mg/kg of methanolic leaves that might be due to oxidative damage. The antioxidative nature of 200 mg/kg in treatment of these diabetic rats might be due to the high presence of flavonoids which in its action in mechanism might have scavenged the reactive oxygen species that are responsible for oxidative stress in the diabetes. This was in agreement with the work carried out by [18] who investigated myocardial infarction in streptozotocin induced male rats on a low dosage of methanolic *Morus alba Linn.* in an *in vivo* method and found out that the low dosage essentially decreased the activities of reactive oxygen species. This result however did not agree with the work done by [18] who treated diabetic rats with 500 mg/kg in high dose and found out that there were decrease in the cardio-protective activities of antioxidative enzymes of superoxide dismutase and catalases.

Table 3 revealed a correlation of decreasing lipid peroxidation as MDA levels with increased levels of SOD, increased, TAS decreased TOS from the results of the diabetic male albino rats treated with 200 mg/kg of ethanolic leaves were observed when compared to the increased MDA, decreased SOD, TAS and increased TOS levels of the diabetic rats treated with 400 mg/kg of ethanolic rats. This decreased in MDA exhibited by treatment with 200 mg/kg of ethanolic leaves may be due to phytochemical presence of Flavonoids, Quercetin is the most studied type of flavonol, which might have shown a significant

<table>
<thead>
<tr>
<th>Groups</th>
<th>SOD (ng/ml)</th>
<th>TAS (mU/ml)</th>
<th>TOS (mU/ml)</th>
<th>OSI</th>
<th>MDA (mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRP1NC</td>
<td>412.47 ± 1.32</td>
<td>58.81 ± 15.38</td>
<td>363.55 ± 7.58</td>
<td>6.39 ± 2.15</td>
<td>20.51 ± 1.75</td>
</tr>
<tr>
<td>GRP2PC</td>
<td>409.42 ± 1.42</td>
<td>43.69 ± 4.04</td>
<td>336.05 ± 13.16</td>
<td>7.72 ± 0.53</td>
<td>36.94 ± 0.27</td>
</tr>
<tr>
<td>GRP3</td>
<td>414.24 ± 2.15</td>
<td>109.84 ± 78.99</td>
<td>349.74 ± 32.12</td>
<td>6.64 ± 1.34</td>
<td>15.59 ± 1.84</td>
</tr>
<tr>
<td>GRP5</td>
<td>411.8 ± 1.49</td>
<td>75.25 ± 0.42</td>
<td>353.51 ± 6.07</td>
<td>4.69 ± 0.05</td>
<td>19.0 ± 1.49</td>
</tr>
<tr>
<td>GRP6</td>
<td>411.38 ± 0.71</td>
<td>67.54 ± 18.95</td>
<td>319.37 ± 24.69</td>
<td>5.10 ± 1.71</td>
<td>21.1 ± 1.86</td>
</tr>
<tr>
<td>GRP9</td>
<td>414.26 ± 0.11</td>
<td>111.62 ± 12.95</td>
<td>368.66 ± 14.76</td>
<td>3.35 ± 0.55</td>
<td>15.43 ± 2.24</td>
</tr>
<tr>
<td>p-values</td>
<td>< 0.0001</td>
<td>0.0217</td>
<td>0.004</td>
<td>0.1863</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>F-values</td>
<td>9.12</td>
<td>3.267</td>
<td>4.692</td>
<td>1.646</td>
<td>110</td>
</tr>
<tr>
<td>Remark</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NS</td>
<td>S</td>
</tr>
</tbody>
</table>

Number superscripts (1,2,3,...) indicate significance at *p*<0.05 (Tukey’s post hoc test), with each number signifying the corresponding group.

<table>
<thead>
<tr>
<th>Groups</th>
<th>SOD(ng/ml)</th>
<th>TAS (mU/ml)</th>
<th>TOS (mU/ml)</th>
<th>OSI</th>
<th>MDA (mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRP1NC</td>
<td>412.47 ± 1.32</td>
<td>58.81 ± 15.38</td>
<td>363.55 ± 7.58</td>
<td>6.39 ± 2.15</td>
<td>20.51 ± 1.75</td>
</tr>
<tr>
<td>GRP2PC</td>
<td>409.42 ± 1.42</td>
<td>43.69 ± 4.04</td>
<td>336.05 ± 13.16</td>
<td>7.72 ± 0.53</td>
<td>36.94 ± 0.27</td>
</tr>
<tr>
<td>GRP3</td>
<td>414.24 ± 2.15</td>
<td>109.84 ± 78.99</td>
<td>349.74 ± 32.12</td>
<td>6.64 ± 1.34</td>
<td>15.59 ± 1.84</td>
</tr>
<tr>
<td>GRP5</td>
<td>411.8 ± 1.49</td>
<td>75.25 ± 0.42</td>
<td>353.51 ± 6.07</td>
<td>4.69 ± 0.05</td>
<td>19.0 ± 1.49</td>
</tr>
<tr>
<td>GRP6</td>
<td>411.38 ± 0.71</td>
<td>67.54 ± 18.95</td>
<td>319.37 ± 24.69</td>
<td>5.10 ± 1.71</td>
<td>21.1 ± 1.86</td>
</tr>
<tr>
<td>GRP9</td>
<td>414.26 ± 0.11</td>
<td>111.62 ± 12.95</td>
<td>368.66 ± 14.76</td>
<td>3.35 ± 0.55</td>
<td>15.43 ± 2.24</td>
</tr>
<tr>
<td>p-values</td>
<td>< 0.0001</td>
<td>0.0217</td>
<td>0.004</td>
<td>0.1863</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>F-values</td>
<td>9.12</td>
<td>3.267</td>
<td>4.692</td>
<td>1.646</td>
<td>110</td>
</tr>
<tr>
<td>Remark</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>NS</td>
<td>S</td>
</tr>
</tbody>
</table>

Number superscripts (1,2,3,...) indicate significance at *p*<0.05 (Tukey’s post hoc test), with each number signifying the corresponding group.
Table 3. Oxidative profiles of Streptozotocin induced diabetic male rats treated with ethanolic extract of Morus mesozygia Linn. Stapf. leaf extracts

<table>
<thead>
<tr>
<th>Groups</th>
<th>SOD (ng/ml)</th>
<th>TAS (mU/ml)</th>
<th>TOS (mU/ml)</th>
<th>OSI</th>
<th>MDA (mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRP1NC</td>
<td>412.47 ± 1.32</td>
<td>58.81 ± 15.38</td>
<td>363.55 ± 7.58</td>
<td>6.39 ± 2.15</td>
<td>20.51 ± 1.75</td>
</tr>
<tr>
<td>GRP2PC</td>
<td>409.42 ± 1.42</td>
<td>43.69 ± 4.04</td>
<td>336.05 ± 13.16</td>
<td>7.72 ± 0.53</td>
<td>36.94 ± 0.27</td>
</tr>
<tr>
<td>GRP4</td>
<td>411.22 ± 1.03</td>
<td>145.6 ± 81.31</td>
<td>383.84 ± 28.91</td>
<td>3.87 ± 2.82</td>
<td>17.20 ± 0.41</td>
</tr>
<tr>
<td>GRP7</td>
<td>413.75 ± 0.71</td>
<td>56.32 ± 2.233</td>
<td>340.62 ± 8.04</td>
<td>6.05 ± 0.40</td>
<td>22.99 ± 7.59</td>
</tr>
<tr>
<td>GRP8</td>
<td>416.69 ± 0.36</td>
<td>154.24±47.43</td>
<td>365.54 ± 13.08</td>
<td>7.72±1.26</td>
<td>2.97 ± 1.25</td>
</tr>
<tr>
<td>GRP9</td>
<td>414.26 ± 0.11</td>
<td>111.62 ± 12.95</td>
<td>368.66± 14.74</td>
<td>3.35 ± 0.55</td>
<td>15.43 ± 2.24</td>
</tr>
<tr>
<td>p-values</td>
<td>< 0.0001</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.0002 < 0.0001</td>
<td></td>
</tr>
<tr>
<td>F-values</td>
<td>35.02</td>
<td>7.637</td>
<td>6.453</td>
<td>7.942 54.39</td>
<td></td>
</tr>
<tr>
<td>Remark</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>

Number superscripts (1,2,3,….) indicate significance at p<0.05 (Tukey’s post hoc test), with each number signifying the corresponding group.

