The Immediate Effect of Steam Bath and Sauna Bath on Heart Rate Variability and Body Composition in Obese Individuals: A Comparative Study

Mayank Tripathi¹*, K. J. Sujatha¹# and Prashanth Shetty²†

¹Department of Natural Therapeutics, SDM College of Naturopathy and Yogic Sciences, Ujire, Dakshina Kannada, Karnataka, India.
²SDM College of Naturopathy and Yogic Sciences, Ujire, Dakshina Kannada, Karnataka, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JOCAMR/2021/v16i430317

Editor(s):
(1) Dr. Sahdeo Prasad, Texas Tech University, USA.
(2) Michael G Mauk, University of Pennsylvania, USA.
(3) Jamille Silva Nogueira, University of Campinas-São Paulo, Brazil.

Reviewers:
(1) Y Rosy Ayda, Government Yoga and Naturopathy Medical College, India.
(2) (3) Jamille Silva Nogueira, University of Campinas-São Paulo, Brazil.

Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here: https://www.sdiarticle5.com/review-history/77362

Received 20 October 2021
Accepted 22 December 2021
Published 24 December 2021

ABSTRACT

Aim: The present study was designed to evaluate and compare the immediate effects of steam bath and sauna bath on body composition and Heart Rate Variabilities in individuals with obesity.

Study Design: Prospective randomised comparative trial.

Materials and Methods: Participants visiting Shantivana Nature cure hospital with age ranging from 18 to 32, without any comorbidities and Body Mass Index (BMI) more than 31 kg/m² were appraised about the study protocol and after getting informed consent were divided into Steam bath group (n = 50) and Sauna bath group (n = 50) and were administered one sitting of Steam bath and sauna bath for 15 minutes. The Heart Rate Variability (HRV) and Body Fat Analyser data was recorded before and after one sitting of treatment. The data was analysed using JASP (version 0.14.1.0) software and parametric and non-parametric tests were employed based on the normal distribution.

*Corresponding author: E-mail: dr.mayanktripathi1993@gmail.com;
Results: Marked changes were observed in BMI (p= 0.022), Total Body Water (TBW; p<0.0001), Heart Rate (HR; p= 0.002), RR Interval (p< 0.001), NN50 (p=0.013), pNN50 (p=0.0001), variables in the Steam bath group after comparing with the baseline. In the Sauna bath group significant changes (in %) were seen in Body weight (BW; p<0.001), BMI (p<0.001), Free-Fat Mass (FFM; p= 0.004), Basal Metabolic Rate (BMR; p< 0.001), Systolic Blood Pressure SBP; p= 0.008), HR (p<0.001), Mean RR (p<0.0001), RMSSD (p=0.005), pNN50 (p<0.0001), Very low frequency (VLF; p<0.0001), Low Frequency (LF; p<0.001), High Frequency (HF; p<0.001), LF/HF (p<0.001). When comparing steam bath with sauna bath group, the variables Diastolic Blood Pressure (DBP; p=0.002), HR (p= 0.021), RMSSD (p<0.001), RMSSD (p<0.001), NN50 (p<0.001), pNN50 (p<0.001), VLF (p<0.001) showed significant changes.

Conclusion: The present study concludes that single dose of steam bath and sauna bath reduces the body weight by acting on the total body water percentage, reduces diastolic blood pressure, and causes vagal dominance. Sauna bath also increases basal metabolic rate which further helps in improving metabolism in the body and further helps in reducing body weight.

Keywords: Naturopathy; obesity; steam bath; sauna bath; body composition; heart rate variability.

1. INTRODUCTION

Obesity is currently recognised as a chronic non-communicable disease, defined as a condition characterised by abnormal or excessive fat deposition in adipose tissue to the point of elevated health risk [1]. BMI above 25 kg/m^2 is considered to be characteristic feature of obesity in Asian Indians according to the recent World Health Organisation (WHO) report [2]. Obesity is strongly associated with other metabolic disorders including diabetes mellitus, hypertension, dyslipidaemia, gall bladder disease, osteoarthritis, sleep apnoea, some cancers and higher prevalence of cardiovascular diseases [3, 4].

Evidence suggests that most of the obese patients are seeking alternative forms of medicine as there are less treatment options available in conventional medicine. The users of complementary and alternative medicine (CAM) tend to pursue generally healthy lifestyles, which suggest that they may be open to additional recommendations toward optimizing their health. “Complete systems of theory and practise that have evolved independently from or parallel to allopathic (conventional) medicine” is how whole systems of complementary and alternative medicine (WSCAM) are defined [5].

Naturopathy is a man-made approach for living in harmony with nature's constructive principles on physical, mental, moral, and spiritual levels [11]. Thedmodalities included in naturopathy are diet therapy, fasting therapy, massage therapy, air therapy, mud therapy, hydrotherapy, magnet therapy and acupuncture[6].

Hydrotherapy, one of the naturopathic treatment modality consists of internal and external use of water in various forms such as ice, water and steam with desired pressure, duration, applied to the preferred site for health promotion and disease management [7].

By having a substantial impact on physical, biochemical, and haematological parameters, steam bath is one of the most essential time-tested water therapies that promote perspiration in a most natural way and has health benefits such as increased basal metabolic rate, weight reduction, and relaxation [8].

Sauna bathing is characterized by high temperature and dry air which helps to deeply cleanse the skin, promote weight loss, improve blood circulation, accelerate muscle recovery, relieve tension headaches, and induce a deeper and more relaxing sleep [9, 10].

Several studies found that obesity is associated with reduced HRV which forms a potent risk factor for cardiovascular diseases. Obese patients have increased sympathetic activity and a withdrawal of vagal activity and these autonomic disturbances improve after weight loss [11].

A Study conducted by Hussain J et al., have concluded that regular dry sauna bath has potential health benefits [12]. Shiralkar et al. [13] concluded that the continuous seven days of steam, sauna shows the significant decrease in the fasting blood glucose levels in the peoples who do not practice any exercise and also athletes.
A study by Pilch W and his colleagues concluded that the wet sauna where the humidity is higher causes a much greater load of heat for the organism compared to the dry sauna bath [14]. Panov [15] concluded that there was significant increase in blood gastrin, aldosterone level and decrease in the concentrations of cortisol after steam bath.

A study published in International Journal of Biometeorology by Soomin Lee and colleagues concluded that the morning mist sauna has reduced burden on cardiovascular system and that skin temperature was maintained compared to other bathing methods and that it improves the work efficiency during the task period of the day [16]. Sathoshi Iwase et al. [17] concluded that mist sauna is safer sauna bathing system which has more efficiency on circulatory and thermoregulatory function when compared to dry sauna bathing.

A study published in Journal of Occupational Health concluded that healthy subjects exposed to heated temperature of 37°C with humidity of 75% for 30 minutes showed significant increase in heart rate, body temperature, LF: HF ratio, subjective symptoms and significant decrease in HF component when compared to thermo-neutral condition [18]. Another study by Soomin Lee et al. [19] concluded that full immersion and mist sauna are effective in facilitating recovery from muscle fatigue due to increased skin circulation and concentration of oxygenated haemoglobin.

These evidences evaluated the effects of steam bath and sauna bath separately and concluded its benefits on obesity. Hence the present study was designed to evaluate the immediate effects of steam and sauna bath in subjects with increased body weight and to compare the effects on body compositional changes, heart rate and HRV.

2. METHODOLOGY

2.1 Subjects

A total of 150 subjects were screened using the BMI classification chart and 100 subjects who satisfied the inclusion and exclusion criteria were recruited from inpatient facility of Sri Dharmasthala Manjunatheshwara Yoga and Nature cure hospital, Shanthivana, Dharmasthala.

2.2 Method of Collection of Data

2.2.1 Criteria for diagnosis

The diagnosis was made according to the redefined version of WHO classification criteria of BMI and subjects with BMI above 31 kg/m² were recruited for the present study [2].

2.2.2 Inclusion criteria

- Age 18 to 32 years
- Subjects who are diagnosed as obese according to WHO classification with BMI above 31kg/ m²
- Gender - Male and Female
- Subjects willing to participate in the study

2.2.3 Exclusion criteria

- Subjects with open wounds
- Subjects with Fever
- Females under menstruation
- Subjects who are intolerant to heat
- Subjects consuming alcohol and nicotine.

2.3 Study Setting

2.3.1 Design

A prospective randomized comparative trial. Subjects were recruited as and when they arrived to the inpatient facility.

2.3.2 Sample size

Total number of subjects (n) = 100

2.3.3 Grouping

Subjects were randomly allocated to two groups by odd and even number chart. A chart with numbers from 1 to 100 was prepared and subjects were allocated either to steam bath (odd number) or to sauna bath (even number) as and when they arrived.

Group 1: Steam bath (n =50)
Group 2: Sauna bath (n = 50)

2.4 Intervention

2.4.1 Steam Bath

- Temperature: 43.3°C to 54.4°C (110F to 130F) with 100% humidity
• Duration - 15 minutes
• Apparatus: A modular steam bath cabinet has a steam generating system including a heated, inclined evaporating surface over which heated liquid flows to cause evaporation of the liquid. Any known evaporated liquid such as water is collected, reheated and recirculated. The steam generating system is part of the module, which includes the floor of the cabinet.
• Procedure – Prior to the intervention the subjects were asked to drink 2 to 3 glasses of water and take a cold shower before entering the steam chamber. The subjects were made to sit in the chamber with minimal clothing with a cold compress on head. After the intervention the subjects should dry themselves with a dry towel and dressed up for the post assessment which was done after intervention [20].

2.4.2 Sauna Bath
• Temperature: 80°C to 100°C (176F to 212F) with 10-20% humidity [17]
• Duration: 15 minutes
• Apparatus: Sauna bath chambers are improved replacements of the old-time Turkish bath chambers. A cabin, specially made with pine wood is used for this purpose. Depending on the size of the cabin, two to ten patients could be treated at a time.
• Procedure: Before entering the chamber, the subjects were asked to drink 2 to 3 glasses of water. While in the cabin the subject was asked to frequently rub himself to encourage dilation of the surface vessels. After the intervention subjects were advised to quickly dry himself. Post interventional data was recorded after 5 minutes [20].

Fig. 1. Illustration of the study plan
2.5 Assessment

2.5.1 Body weight and composition analysis

Body weight and composition was measured by bio-impedance equipment (Tanita SC-330, Tanitacorp, Japan) which provided a print-out of measured impedance and calculated body weight and composition. Subjects were standing on the metal sole plates of the machine. All measurements were made after a period of at least 10 min standing to minimize potential errors from acute shifts in fluid distribution. Body composition for all subjects were estimated using the standard prediction equations rather than those designated for athletes, regardless of the exercise habits of the participants [21,22].

2.5.2 Blood pressure

Blood pressure was measured in the supine position. A rubber cuff was wrapped around the subject’s upper arm and inflated to a pressure of 20mmHg above the level at which radial pulsation can no longer be felt. Place the stethoscope lightly over the brachial artery and reduce the pressure in the cuff until the first sounds are heard. This first Korotkoff sound correlates with systolic blood pressure. With further lowering of the pressure in the cuff, the sounds die away completely as flow is unimpeded by the cuff which is called as fifth Korotkoff sound, which correlates with the diastolic blood pressure [23].

2.5.3 Heart rate variability

The HRV was recorded for 7 minutes before and after the intervention. The Electrocardiogram (ECG) was be assessed using MP36 data acquisition system (Biopac Student Lab). The ECG was recorded using Ag/Agcl pre gelled electrodes, standard bipolar limb lead II configuration and an AC amplifier with 1.5 Hz high pass filter and 75 Hz low pass filter settings (Biopac, USA). The sampling rate would be 1024 Hz.

2.6 Data Extraction

2.6.1 Blood pressure

The blood pressure was recorded manually by mercury sphygmomanometer.

2.6.2 Body weight and composition

The data were extracted in the form of a printed slip in which Body weight and Body composition in terms of FFM, TBW and BMR were recorded.

2.6.3 Heart rate variability

From the digitized ECG data, the R waves was detected to obtain a point event series of successive R-R intervals, from which the beat to beat heart rate series was computed. The data recorded was visually inspected off-line and only noise free data was included for analysis. Data was averaged for each 5 minute block period. The HRV power spectrum was obtained using Fast Fourier Transform analysis. Frequency domain and time domain components were analyzed separately.

- Frequency domain analysis-The energy in the HRV series of the following specific bands were studied i.e. low frequency component (LF), and high frequency component (HF). The LF and HF values were expressed as normalized units. LF: HF was also calculated.

- Time domain analysis- The following components of time domain analysis of HRV were obtained: the HR, the mean RR interval (the mean of the intervals between adjacent QRS complexes or the instantaneous heart rate); RMSSD (the square root of the mean of the sum of the squares of differences between adjacent NN intervals); NN50 (the number of interval differences of successive normal to normal intervals greater than 50ms), and pNN50 (the proportion derived by dividing NN50 by the total number of NN intervals) [24].

2.7 Data Analysis

The data was tabulated in excel and statistical analysis was done using JASP software (Version 0.14.1.0). Data were checked for normal distribution using the Shapiro-Wilk test and analysed by using parametric and non-parametric tests. A P-value of less than 0.05 was accepted as an indicator of significance.

3. RESULTS

100 subjects were randomly assigned into Steam bath (n=50) and Sauna bath group (n=50). Baseline and post-intervention assessments of each intervention was done. Statistical analysis was done to compare baseline and post-intervention assessments of between the group (Independent t test and Mann Whitney U test) and within the group (Wilcoxon signed rank test). There were no significant differences between
the steam bath and Sauna bath group at baseline. Table 1 and Table 2 represents the comparisons between steam and sauna baths.

Significant changes were observed in BMI (p=0.022), TBW (p<0.0001), HR (p=0.002), RRI (p<0.001), NN50 (p=0.013), PNN50 (p=0.0001), variables in the Steam bath group after comparing with the baseline. There was no significance seen between baseline and post assessment of SBP (0.436), DBP (0.252), RMSSD (0.367), VLF (0.626), LF (0.626), HF (0.787), LF/HF (0.762), BW (0.063), FFM (0.81), and BMR (0.9).

In the Sauna bath group significant changes were seen in BW (p<0.001), BMI (p<0.001), FFM (p=0.004), BMR (p<0.001) SBP (p=0.008), HR (p<0.001), Mean RR (p<0.0001), RMSSD (p=0.005), PNN50 (p<0.0001), VLF (p<0.0001), LF (p<0.001), HF (p<0.001), LF/HF (p<0.001), and there were no significant changes in in DBP (p=0.178), NN50 (p=0.877) TBW (p=0.103) variables. While comparing the baseline and post assessment value of and there was no statistical significant seen.

While comparing the post-assessment data of steam bath with sauna bath group, the variables DBP (p=0.002), HR (p=0.021), RMSSD (p<0.001), RMSSD (p<0.001), NN50 (p<0.001), pPNN50 (p<0.001), VLF (p<0.001). There were no significant changes in Mean RRI (0.438), LF (0.329), HF (0.406), LF/HF (0.296), BW (0.759), BMI (0.304), FFM (0.595), TBW (0.448) and BMR (0.81).

4. DISCUSSION

In the present study Sauna bath group showed significant decrease in Fat%, increase in lean muscle mass and water% and significant increase in BMR was observed. Significant changes in components of HRV, blood pressure and autonomic nervous system was observed followed by both interventions.

All of the body's fatty tissue is considered fat body mass, while the bones, organs, and muscles are considered lean body mass. As a result, the word “lean muscle" refers to muscle as a component of lean body mass. These two components are usually measured in a ratio, or by percentage. Body fat percentage, the amount of the body composed of fat mass since the body fat and lean muscle mass are inter related any change in fat% results in change of lean muscle mass. Hence the changes observed in body composition needs to be studied further to understand the lasting influence of either sauna bath or steam bath.

Earlier studies have reported a possible sympathetic drive following Sauna bath which would last for as long as 15 minutes to 1 hour duration to return back to its base line. It is clear from the present study that the sympathetic tone increases following sauna bath as evidenced by an increase in Low frequency and ratio of low frequency and high frequency component of HRV after 5 minutes of sauna bath intervention. In contrast the high frequency components decreased after 5 minutes of sauna bath intervention, whereas no such changes were observed after steam bath intervention. Hence, the underlying mechanism regulating physiological functions following an exposure to moist heat (steam) needs to be further understood. The factors which might have influenced the results include the duration of steam bath (might take more time to produce similar effects as that of sauna bath), exposure to moist heat (compared to the dry heat of sauna), exposure to ambient temperature immediately after the intervention which facilitates quicker cooling. In a systemic review it was reported that the heart rate accelerates up to twice the resting rate and even more, diastolic and mean arterial pressures decrease, with practically no change in the systolic pressure [25].

The changes were all suggestive of increased sympathetic activity and/or increased vagal modulation. These were an increase in the LF power of HRV, LF/HF ratio and a decrease in the HF power. As described above, most of the changes after sauna bath were suggestive of increased activity in the different subdivisions of sympathetic nervous system activity, though some variables are regulated by several factors. The heart rate for example, is regulated by dual innervations (sympathetic and vagal), as well as humoral factors [26, 27].

The LF power significantly increased after sauna bath session. Conversely, the HF power decreased after sauna bath. The increase in LF after sauna bath could reflect either a change in sympathetic or parasympathetic activity as described above. Taken together the results suggest that sauna bath is associated with changes in the autonomic nervous system suggesting vagal withdrawal. Results of our study in relation to blood pressure and heart rate
Table 1. Comparison between steam and sauna on body weight, BMI, FFM, TBW and BMR

<table>
<thead>
<tr>
<th>Variables</th>
<th>Groups</th>
<th>Mean</th>
<th>SD</th>
<th>Pre</th>
<th>Post</th>
<th>Within the group</th>
<th>Between the group</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW</td>
<td>Steam</td>
<td>82.81</td>
<td>82.67</td>
<td>14.264</td>
<td>14.222</td>
<td>0.063</td>
<td>0.759</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>83.07</td>
<td>82.69</td>
<td>12.48</td>
<td>12.26</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>Steam</td>
<td>30.654</td>
<td>30.57</td>
<td>4.074</td>
<td>4.099</td>
<td>0.022</td>
<td>0.304</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>31.26</td>
<td>31.05</td>
<td>3.73</td>
<td>3.596</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>FFM</td>
<td>Steam</td>
<td>53.204</td>
<td>53.162</td>
<td>11.452</td>
<td>11.398</td>
<td>0.81</td>
<td>0.595</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>54.54</td>
<td>54.33</td>
<td>10.674</td>
<td>10.938</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>TBW</td>
<td>Steam</td>
<td>47.25</td>
<td>47.59</td>
<td>3.642</td>
<td>3.642</td>
<td><0.001</td>
<td>0.448</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>48.852</td>
<td>48.612</td>
<td>5.151</td>
<td>4.817</td>
<td>0.103</td>
<td></td>
</tr>
<tr>
<td>BMR</td>
<td>Steam</td>
<td>6729.08</td>
<td>6723.96</td>
<td>1227.86</td>
<td>1214.68</td>
<td>0.9</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>6527.6</td>
<td>6621.64</td>
<td>1081.53</td>
<td>1072.24</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Note: Values in bold suggests Significance. * = Wilcoxon Signed rank test; ^ = Students t test; # = Mann Whitney U test.

Table 2. Comparison of steam and sauna on blood pressure and HRV

<table>
<thead>
<tr>
<th>Variables</th>
<th>Groups</th>
<th>Mean</th>
<th>SD</th>
<th>Pre</th>
<th>Post</th>
<th>Within the group</th>
<th>Between the group</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP</td>
<td>Steam</td>
<td>120.62</td>
<td>122.98</td>
<td>11.584</td>
<td>12.345</td>
<td>0.436</td>
<td>0.591</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>121.32</td>
<td>124.08</td>
<td>4.635</td>
<td>8.896</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>DBP</td>
<td>Steam</td>
<td>78.28</td>
<td>76.74</td>
<td>8.273</td>
<td>7.483</td>
<td>0.252</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>79.88</td>
<td>80.88</td>
<td>3.967</td>
<td>5.363</td>
<td>0.178</td>
<td></td>
</tr>
<tr>
<td>Mean HR</td>
<td>Steam</td>
<td>82.157</td>
<td>84.929</td>
<td>18.009</td>
<td>16.373</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>80.341</td>
<td>101.009</td>
<td>7.812</td>
<td>31.564</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Mean RRI</td>
<td>Steam</td>
<td>796.458</td>
<td>749.626</td>
<td>118.026</td>
<td>117.345</td>
<td><0.001</td>
<td>0.438</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>797.898</td>
<td>715.094</td>
<td>86.963</td>
<td>167.120</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>RMSSD</td>
<td>Steam</td>
<td>77.17</td>
<td>73.846</td>
<td>98.067</td>
<td>91.161</td>
<td>0.367</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>263.366</td>
<td>418.091</td>
<td>362.169</td>
<td>716.38</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>NN50</td>
<td>Steam</td>
<td>62.38</td>
<td>47.16</td>
<td>68.12</td>
<td>65.77</td>
<td>0.013</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>104.76</td>
<td>145.24</td>
<td>77.36</td>
<td>137.428</td>
<td>0.877</td>
<td></td>
</tr>
<tr>
<td>PNN50</td>
<td>Steam</td>
<td>26.064</td>
<td>31.308</td>
<td>26.771</td>
<td>86.938</td>
<td>0.03</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>29.424</td>
<td>49.16</td>
<td>23.919</td>
<td>13.69</td>
<td>0.013</td>
<td><0.001</td>
</tr>
<tr>
<td>VLF</td>
<td>Steam</td>
<td>35.24</td>
<td>36.512</td>
<td>20.324</td>
<td>21.502</td>
<td>0.626</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>36.584</td>
<td>24.38</td>
<td>16.499</td>
<td>13.235</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td>Steam</td>
<td>51.122</td>
<td>48.65</td>
<td>22.892</td>
<td>23.52</td>
<td>0.626</td>
<td>0.329</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>55.766</td>
<td>41.076</td>
<td>13.762</td>
<td>14.323</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>Steam</td>
<td>52.286</td>
<td>51.35</td>
<td>21.254</td>
<td>23.52</td>
<td>0.787</td>
<td>0.406</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>43.638</td>
<td>58.414</td>
<td>13.69</td>
<td>14.573</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>LF/HF</td>
<td>Steam</td>
<td>1.434</td>
<td>1.736</td>
<td>1.371</td>
<td>2.015</td>
<td>0.762</td>
<td>0.296</td>
</tr>
<tr>
<td></td>
<td>Sauna</td>
<td>1.456</td>
<td>0.892</td>
<td>0.584</td>
<td>0.807</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Note: Values in bold suggests Significance. * = Wilcoxon Signed rank test; ^ = Students t test; # = Mann Whitney U test.

reveal that Sympathetic neural control of arteriolar resistance offers a powerful mechanism to regulate regional blood flows to individual Organs and tissues. As the arterioles are the major contributors to total peripheral resistance, sympathetic control also plays a principal role in the regulation of systemic blood pressure. However, numerous factors can influence neurogenic constriction of vascular beds, individual vessels, and even different segments of the same vessel [28].

These include the density of sympathetic innervation, density and subtype of adrenergic receptors, differences in nor epinephrine kinetics, release of co transmitters, and local factors such as the degree of basal tone, the concentrations of vasoactive tissue metabolites, and vessels end structure. Studies conducted on evaluating the effect of heat stress on baroreflex responses summarized that heat stress does not alter the baroreflex control of heart rate. The exceptions are from a few studies in which the change in
heart rate is attenuated during relatively small spontaneous oscillations in blood pressure. Possibly, these observations are due to reduced cardiac vagal activity associated with heating [29].

The baroreflex gain of the blood pressure–heart rate relationship was unchanged when greater changes in baroreceptor loading were caused either mechanically or pharmacologically during whole-body heating, cutaneous post synaptic vasoconstrictor responses are attenuated by local and indirect whole-body heating, whereas muscle vasoconstrictor responses are not impaired when muscle temperature is elevated approximately 4°C. Sauna baths lower blood pressure by lowering peripheral resistance [30].

4.1 Strength of the Study

The present study involved 100 subjects with obesity and evaluated the immediate effect of Steam and Sauna. Both subjective as well as objective components were assessed. The participants did not face any side effects during intervention or evaluation. Both interventions gave positive results.

4.2 Limitations of the Study

- Only Immediate effects were assessed.
- Only one sitting of intervention was observed.

4.3 Scope for Future Research

Further studies can be designed with increased frequency of therapies and biochemical indices like lipid profile to evaluate the long-term and cardioprotective effect of the therapies.

5. CONCLUSION

The present study concludes that single dose of steam bath and sauna bath reduces the body weight by acting on the total body water percentage, reduces diastolic blood pressure, and causes vagal dominance. Sauna bath also increases basal metabolic rate which further helps in improving metabolism in the body and further helps in reducing body weight. This can be applied as a therapy for managing obesity and its complications.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT

Subjects who fulfilled the inclusion criteria were given information sheets having details regarding the nature of study and intervention to be used. Subjects were given enough time to go through the study details mentioned in the information sheet. They were allowed to ask any questions and if they agree to participate in the study, they were asked to sign the informed consent form (sample copy is enclosed in Annexure) which was mainly provided in the English language. All expressed their willingness to participate in the study by giving signed informed consent.

ETHICAL APPROVAL

Approval was obtained from the Institutional Ethical Committee, as all tests were essentially non-invasive.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

5. Bertisch SM, Wee CC, McCarthy EP. Use of complementary and alternative

ANNEXURE

Consent Form –

SDM COLLEGE OF NATUROPATHY & YOGIC SCIENCES,
UJIRE – 574240, DK DISTRICT, KARNATAKA, INDIA

Phone: XXXXXX-XXXXX, Email: XXXX@gmail.com, Website: www.XXXX.XX

Participant Identification Number: ___________________
Title of Project : The Immediate Effect Of Steam Bath And Sauna Bath On Heart Rate Variability And Body Composition In Obese Individuals: A Comparative Study
Researcher : Dr. Mayank Tripathi, S.D.M College of Naturopathy & Yogic Sciences, Ujire.

I have been invited to participate in the research project “The Immediate Effect of Steam Bath and Sauna Bath on Heart Rate Variability and Body Composition in Obese Individuals: A Comparative Study”

I have been informed that there will be pre and post assessments where non-invasive methods like Fat analyser and Heart Rate Variability will be used to measure body weight fat percentage, BMR, BMI, blood pressure and HRV.

I am aware that there may be no benefit to me personally and that I will not be compensated whatsoever.

I have had the opportunity to ask questions about the study and any questions that I have asked have been answered to my satisfaction.

I hereby confirm that I have understood the above mentioned study and consent voluntarily to participate as a subject in this research. I also understand that I have the right to withdraw from the research at any time without in any way affecting my medical care or legal rights.

Name of the subject: ___________________
Date: ____________ Signature: ____________

We have accurately read or witnessed the accurate reading of the consent form to the potential subject, and the individual has had the opportunity to ask questions. We confirm that the individual has given consent freely. A copy of this Informed Consent Form has been provided to the subject.

Researcher: XXXX
Date: ____________ Signature: ____________

© 2021 Tripathi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/77362