Corchorus olitorius Extract Attenuate Isoproterenol-Induced Cardiac Injury via Inhibition of Oxidative Stress, Arrhythmia and Pro-Apoptotic Protein Bax Expression

Main Article Content

Babatunde Adebola Alabi
Temidayo Olutayo Omobowale
Ademola Oyagbemi
Ileri-Oluwa Busayo Emmanuel
Adeolu Adedapo
Oluwole Fagbemi
Olugbenga Iwalewa

Abstract

Background and Aim: Corchorus olitorius (CO) leaf was reported to possess abundant antioxidants and used in the traditional treatment of heart disease. Previous studies revealed the protective roles of antioxidants against oxidative stress and inflammation, which are important underlying pathogenesis of myocardial injury that leads to infarction and heart failure. Therefore, CO leaf was chosen to evaluate its cardio-protective effects against ischemic-induced myocardial injury.

Materials and Methods: Thirty male rats (Wistar strains) were divided into five groups (n = 6): normal control group, myocardial injury control group, pretreatment groups (250 and 500 mg/kg), positive control group (10 mg/kg enalapril). After pre-treatment of rats with ethanol leaf extract of CO for 19 days, Isoprenaline (100 mg/kg) administration induced acute myocardial injury and parameters like blood pressure, electrocardiogram, lipid peroxidation, antioxidants were assessed and tissue subjected to histological evaluations.

Results: Isoproterenol given through subcutaneous significantly (p<0.05) reduced blood pressure and electrocardiography showed reduced p-interval and prolongation of QRS-interval in rats.               The extract significantly increased the blood pressure and p-interval, QRS-interval were significantly reduced. The significant increase in tissue malondialdehyde, serum         myeloperoxidase, creatine kinase-MB, lactate dehydrogenase and expression of Bax in the infarction control rats was decreased (p<0.05) in pre-treatment rats. Pre-treatment also increased glutathione-s-transferase, reduced glutathione and non-protein thiol level significantly. In contrast to cardio-injury control, histology showed mild level of inflammation and fatty infiltration in pre-treated rats.

Conclusion: This study showed the protective role of ethanol extract of CO against myocardial injury through anti-apoptotic, antioxidant, anti-inflammatory and anti-arrhythmic effect. 

Keywords:
Corchorus olitorius, oxidative stress, inflammation, arrhythmia, apoptosis, immunohistochemistry

Article Details

How to Cite
Alabi, B. A., Omobowale, T. O., Oyagbemi, A., Emmanuel, I.-O. B., Adedapo, A., Fagbemi, O., & Iwalewa, O. (2020). Corchorus olitorius Extract Attenuate Isoproterenol-Induced Cardiac Injury via Inhibition of Oxidative Stress, Arrhythmia and Pro-Apoptotic Protein Bax Expression. Journal of Complementary and Alternative Medical Research, 10(2), 17-28. https://doi.org/10.9734/jocamr/2020/v10i230159
Section
Original Research Article

References

Gregory A, Roth MD, Huffman AEM, Valery F, George A, Mensah MN, et al. Global burden of cardiovascular disease; Global and regional pattern in cardiovascular mortality between 1990 – 2013.Circulation. 2015;132:1667-1678.

Available:htttp://dx.doi.org/ 10.1161/CIRCULATIONAHA.114.008720.

Julian T, Joseph M, Clarissa G, Luciano A, Alexander T, Gerald S, et al. Acute myocardial infarction in Sub Sahara Africa: Need for Data. PLos One. 2014;9(5): e96688.

Available:htttp://dx.doi.org/ 0.1371/journal.pone.0096688.

Hausenloy DJ, Yellon DM.Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest. 2013; 123:92–100.

Available:https://doi.org/10.1172/JCI62874.

Jack PMC, Matthijs B, Mat JAP, Daemen Jos FM. The infarcted myocardium: Simply dead tissue, or a lively target for therapeutic interventions.Cardiovascular Research. 1999;44:232–241.

Available:https://doi.org/10.1016/S0008-6363(99)00212-6.

Thomas A, Asaf B, Shuchi A, Shafika A, Adrianna M. Growing epidemic of coronary heart disease in low- and middle-income countries. Current Problem in Cardiology. 2010;35(2):72–115.

Yue-tao L, Hong-mei J,Xing C,Gang D, Hong-wu Z, Zhong-Mei Z. The metabolic disturbances of isoproterenol induced myocardial infarction in rats based on a tissue targeted metabonomics, Journal of Molecular Biosystem. 2013;9: 2823-2834.

Available:htttp://dx.doi.org/10.1039/C7RA12247K.

Liew R, Sulfi S, Ranjadayalan K, Cooper J, Timmis AD. Declining case fatality rates for acute myocardial infarction in South Asian and white patients in the past 15 years, Heart Pub Med. 2006;92(8):1030–103.

Available:htttp://dx.doi.org/10.1136/hrt.2005.078634.

Zeghichi SS, Kallithkara, Simopoulos AP. Nutritional composition of molehiya (Corchorus olitorius) and Stamnagathi (Cichoriumspinosum) in, A.P.World Review of Nutrition and Dietetics. 2003;91:1-21.

Available:https://eurekamag.com/research/003/865/003865924.php

Ndlovu J, Afolayan AJ. Nutritional analysis of the South African wild vegetable Corchorusolitorius L. Asian J of Plant Science. 2008;7(6):615-618.

Available:https://scialert.net/abstract/

DOI:10.3923/ajps.2008.615.618

Salawu OS, Akindahunsi AA,Comuzzo P. Chemical composition and invitro antioxidant Activities of some Nigerian vegetables. Journal of Pharmacology and Toxicology. 2006;1:429-437.

Available:https://scialert.net/abstract/

DOI:10.3923/jpt.2006.429.437

Fondio L, Grubben GJ, Mike L. Plant resources of the tropical Africa 2.Kew Bulletin. 2004;59(4):650.

Available:https://doi.org/10.2307/4110929

Begum T, Kumar D. Usefulness of morphological characteristics for DUS testing of jute (Corchorusolitorius L. and C. capsularis L.) leaf: Spanish Journal of Agricultural Resarch. 2011;9(2):473.

Available:https://doi.org/10.5424/sjar/20110902-203-10

Das AK, Bag S, Sahu R, Dua TK, Sinha MK, Gangopadhyay M, et al. Protective effect of Corchorusolitorius leaves on sodium arsenite-induced toxicity in experimental rats. Food ChemToxicol. 2010;48(1):326-35.

Available:htttp://dx.doi.org/10.1016/j.fct.2010.02.012.

Calderon A, Barrios V, Escobar C, Ferrer E, Barrios S, GonzálezPedel V, et al. Detection of left ventricular hypertrophy by different electrocardiographic criteria in clinical practice. Findings from the sara study. ClinExpHypertens. 2010;32:145–53.

Available:https://doi.org/10.3109/10641960903254455

Olszewska-Słonina DM, Mątewski D, Czajkowski R, Olszewski KJ, Woźniak A, et al. The concentration of thiobarbituric acid reactive substances (TBARS) and paraoxonase activity in blood of patients with osteoarthrosis after endoprosthesis implantation. Med SciMonit. 2011; 17(9):CR498–504. PMID 21873946.

Available:https://doi.org/10.12659/msm.881936.

Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–8.

Available:http://dx.doi.org/ 10.12691/jcrt-2-3-1.

Wendel A, Fausel M, Safayhi H, Tiegs G, Otter RA. Novel biologically active seleno-organic compound-II, activity of PZ 51 in relation to glutathione peroxidase. Biochem Pharmacol. 1984;33:3200–41.

Available:https://doi.org/10.1016/0006-2952 (84)90084-4

Habig WH, Pabst MJ, Jacoby WB. Glutathione-S-transferase activity: The enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.

Available:https://doi.org/10.1016/0006-291x (73)90616-5

Lowry OH, Rosebrough NJ, Farr AL, Randal RJ. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry. 1951;193(1):265-75.

Available:https://doi.org/10.1016/0003-2697(79)90222-7

Chen R, Wang J, Zhang Y, Tang S, Zhan S. Key factors of susceptibility to anti-tuberculosis drug-induced hepatotoxicity. Arch Toxicol.2015;89:883–97.

Available:https://doi.org/10.1007/s00204-015-1473-1

Miller TA, Li D, Kuo YJ, Schmidt KL, Shanbour LL. Non-protein sulfhydryl compounds in canine gastric mucosa: Effects of PGE2 and ethanol. Am J Physiol. 1985;249:G137-G144.

Available:https://doi.org/10.1152/ajpgi.1985.249.1.g137

Alabi B, Omobowale T, Badejo J, Adedapo A, Fagbemi O, Iwalewa O. Protective effects and chemical composition of Corchorusolitorius leaf fractions against isoproterenol-induced myocardial injury through p65NFkB-dependent anti-apoptotic pathway in rats. J Basic Clin Physiol Pharmacol. 2020;31(5).

DOI: 10.1515/jbcpp-2019-0108

Dupuy D, Szabo S. Protection by metals against ethanol-induced gastric mucosal injury in the rat. Comparative biochemical and pharmacologic studies implicate protein sulfhydryls. Gastroenterology. 1986;91:966-974.

Available:https://doi.org/10.1016/0016-5085 (86)90701-8

Rainsford KD. Orally administered aspirin and aspirin bicarbonate mixtures prevents the severe gastric damage induced by acidified ethanol and sulfhydryl blocker pretreatment counteracts this protective effect in the rat through electron microscopic observation. Gastroentero-logy. 1975;16(7):514-527.

Available:https://doi.org/10.1136/gut.16.7.514

Liu G, Chai C, Cui L.Fluoride causing abnormally elevated serum nitric oxide levels in chicks. Environ Toxicol Pharmacol. 2003;13:199–204.

Available:https://doi.org/10.1016/s1382-6689(03)00002-4.

Omóbòwálé TO, Oyagbemi AA, Ayorinde MF, Ajibade TO, Ebunoluwa R, Asenuga OA, et al. Ameliorative effect of garlic acid on doxorubicin-induced myocardial dysfunction in rats. J Basic ClinPhysiolPharmacol.2017;16-0194.

Available:https://doi.org/10.1515/jbcpp-2017-0029

Sunanda P. Butanolic fraction of Moringa oleifera Lam. (Moringaceae) attenuates isoproterenol–induced cardiac necrosis and oxidative stress in rats.EXCLI Journal. 2015;14:64-74.

Available:http://dx.doi.org/10.17179/excli2014-431

Roza D, Ibrahim J, Athirah Z, Juriyati J. Protective Effects of Labisiapumila var. alata on biochemical and histopathological alterations of cardiac muscle cells in isoproterenol-induced myocardial infarction rats. Molecules. 2015;20 :4746-4763.

Available:http://dx.doi.org/ 10.3390/molecules20034746.

Chagoya de Sachez V, Lucia YM, Susana VG, Lidia M, Jorge SSequential changes of energy metabolism and mitochondrial function in myocardial infarction induced by isoproterenol in ratse12. Can. J. Physiol. Pharmac. 1997;75:1300-1311.

Available:https://doi.org/10.1139/cjpp-75-12-1300

Xia Y, Zweier JL.Measurement of myeloperoxidase in leukocyte-containing tissues. Anal Biochem. 1997;245:93–96.

Available:https://doi.org/10.1006/abio.1996.9940.

Manfred GHistological techniques, 4th ed. UK: Oxford University Press. Oxford, London, New York; 1976.

Available:https://doi.org/10.1007/978-1-4615-9638-7.

Brodde OE.β1and β2 adrenoceptors in the human heart: properties, function, and alteration in chronic heart failure. Pharmacol Rev. 1992;123(6):1727-1728.

Available:https://doi.org/10.1016/0002-8703(92)90851-l.

Yeager JC,Iams SG. The hemodynamics of isoproterenol-induced cardiac failure in spontaneously hypertensive rats. Circ Shock. 1981;168(1):137-142.

Available:https://doi.org/10.3181/00379727-168-41248

Davies MJ. Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J ClinBiochemNutr. 2011;48,8–19.

Available:https://doi.org/10.3164/jcbn.11-006fr.

Kelishomi RB, Ejtemaeemehr S, Tavangar SM, Rahimian R, Mobarakeh J, Dehpour AR. Morphine is protective against doxorubicin-induced cardiotoxicity in rat. Toxicology. 2008;243:96-104.

Available:http://dx.doi.org/10.1016/j.tox.2007.09.026.

Król M, Ufnal M, Szulczyk B, Podsadni P, Drapała A, Turło J. Characterization of Disopyramide derivative ADD424042 as a non-cardiotoxic neuronal sodium channel blocker with broad-spectrum anticonvulsant activity in rodent seizure models. Eur J PharmSci. 2016;9:42-51.

Available :http://dx.doi.org/ 10.1016/j.ejps.2015.10.002

Atli O, Ilgin S, Altuntas H, Burukoglu D.Evaluation of the reproductive toxicity of naproxen sodium and meloxicam in male rats. Human & Experimental Toxicology. 2015;34(4):415-429.

Available:https://doi.org/10.1177/0960327114542886.

Espinosa-Diez C, Miguel V, Daniela M, Thomas K, Patricia S,Susana C, et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015;6:183–197.

Available:http://dx.doi.org/10.1016/j.redox.2015.07.008

En-Ci H, Jian-Guo H, Zhi-Hong L, Xin-Hai N, Ya-Guo Z, Qing G, et al.High levels of serum lactate dehydrogenase correlate with the severity and mortality of idiopathic pulmonary arterial hypertension. ExpTher Med. 2015;9(6):2109–211.

Available:http://dx.doi.org/10.3892/etm.2015.2376.

Hardwick JM, Soane L.Multiple functions of BCL-2 family proteins. Cold Spring HarbPerspect Biol. 2013;5(2).

DOI:10.1101/cshperspect.a008722.

LucianiDS, White SA, Widenmaier SB, Saran VV, Taghizadeh F, Hu X, Allard MF, Johnson JD. Bcl-2 and Bcl-xL suppress glucose signaling in pancreatic ß-cells. Diabetes. 2013;62(1):170–182.

DOI:10.2337/db11-1464.